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The general analytical expressions corresponding to the response obtained for a 
charge transfer process in cyclic chronopotentiometry are presented. The different geo- 
metries considered for the mass transport operator are planar, tubular and spherical. In 
the case of spherical electrodes (such as the dropping mercury electrode and the static 
mercury dropping electrode), we have analyzed the following two cases: solution soluble 
product and electrode soluble product or amalgamation. The solutions deduced here are 
independent of the method used in solving the differential equations system since we have 
applied the superposition principle for which we have only used the properties of  the lin- 
ear operators. 

1. In t roduct ion  

Cyclic chronopotentiometry is a classical electrochemical technique consisting 
of the application of several successive current steps of alternating signs to a deter- 
mined electrode without balance being recovered in the electrode-solution inter- 
phase. This technique was introduced by Herman and Bard in 1963 [1] who applied 
it to stationary plane electrodes and showed its use for the qualitative and quantita- 
tive study of electrode processes [2]. The method used by these authors to solve the 
corresponding differential equations was Laplace's transform method and the 
solution obtained was only valid for plane geometry. 

In this paper, we obtain the general equations corresponding to the application 
of this technique for the study of a charge transfer process which takes place in 
plane and spherical electrodes (of constant and variable area) and also for tubular 
electrodes. The consideration of spherical geometry has allowed us to apply this 
technique to those processes in which the reaction product is a metal which is solu- 
ble in the mercury electrode (amalgamation process). The mathematical resolution 
of this kind of processes is complex and their response to this technique has not been 
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previously studied in the literature, in spite of the advantages that spherical electro- 
des offer as opposed to plane electrodes. 

For the study of amalgamation, it is necessary to consider the spherical diffusion 
operator model for any mercury electrode because, as is well known, for plane elec- 
trodes the solution with amalgamation is equivalent to the solution without amal- 
gamation in semi-infinite linear diffusion. This is a consequence of the invariance 
of the diffusion plane operator against the reflection x ~ -x .  

In a parallel manner to that of the previous paper, we have analyzed the boundary 
value problem in all the previously mentioned situations and we have demonstrated 
in all cases that the response corresponding to the successive application ofj  current 
steps can be expressed as a sum of j  independent responses, in agreement with the 
superposition principle. Therefore, the solutions obtained here are valid for electro- 
des of any geometry and for any behaviour of the reaction product. Moreover, they 
are independent of the procedure used in solving the problem because for their 
deduction we have only used the properties of the linear operators [3,4]. 

2. Theory  

Let us consider the following charge transfer reaction whose cathodic and anodic 
reaction orders a and b can take any positive value and are coincident with the stoi- 
chiometric coefficients for species A and B according to the scheme 

ks 
aA + ne- -.~ bB, (I) 

kb 

where kf and kb are the rate constants of forward (reduction) and backward 
(oxidation) processes. 

We will analyze the response of this electrode processes in cyclic chronopotentio- 
metry, which is a powerful electrochemical technique which provides information 
similar to that of cyclic voltammetry [1,2]. However, the mathematical treatment is 
simpler, primarily because the total flux at the electrode surface at any time is 
known and constant. 

This technique is based on the application of successive and alternating sign cur- 
rent steps to an electrode, in the manner indicated in the following scheme: 

I1 , 0~<t l  < 7"1 , 

---/2, 0~<t2 < 7"2, 

( -1)J+lb,  O<~tj < ~., 

(--1)k+l/k, O<.tk < ~ ,  

(1) 
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where/ j  (1 <~j<~k) is the absolute value of each current step applied, tj is the time 
during which a j  step current is applied and 7) is the time in which the change in sign 
is produced, as well as the absolute value. "0 is lower than or equal to the transition 
time of the process taking place. For the sake of simplicity, we will suppose that 
each reversal of the current is produced precisely at the moment that the transition 
time corresponding to the reduction process A (forward) or to the reoxidation pro- 
cess B (backward) is reached. 

Thus, initially a constant cathodic current 11 is applied during 0 ~< tl < ~'1 0-1 
being the first forward transition time). At time ~'1 the current is changed to an ano- 
dic value - Iz  during 0 ~< t2 < ~'2 (T2 being the first backward transition time). The 
above operations can be continued by giving a series of forward 0"1, T3, . . . )  and 
backward (T2, ~-4, •. -) transition times, with the total time being 

t = -q +7" 2 "4-... q-~-I -Jr t j .  (2) 
To deduce the general expressions corresponding to the response of the process 

(I) with this technique, we will consider: 

(a) Different types of electrodes: we will obtain the solutions corresponding to pla- 
nar, spherical and tubular electrodes of constant area and also planar and sphe- 
rical electrodes of variable area, such as the dropping mercury electrode with 
the expanding plane electrode model and the expanding sphere electrode 
model. 

(b) Different behaviours of the reaction product: We will consider the case where 
the reaction product is soluble in the solution, such as when the reaction product 
is soluble in the electrode (amalgam formation). 

The mass transport is described by the differential equation system 

6ACA = 6BCB = O, (3) 
w h e r e  ~i (i = h or B) is the diffusion operator corresponding to Fick's second law, 
which depends on the electrode geometry. We then have the following cases [5,6]: 

(a) Expanding sphere electrode model for a DME: 

cO [CO2 2CO] ( 3 co 

(b) Expanding plane electrode model for a DME: 

0 o m 2x 0 
6i --  cOt Di cOx2 3t  cOx " 

(c) Stationary sphere electrode model for an SMDE: 

;3; 

(4) 

(5) 

(6) 
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(d) Tubular electrode model (TE): 

10] 0 _ Di + -  (7) 

(e) Stationary plane electrode model (SPE): 

o o 2 
~i  - -  Ot Di Ox---- 2 • (8) 

In eqs. (4)-(8), Di (i = A or B) is the diffusion coefficient of the i species. 
The operators 6i given by eqs. (4)-(8) are always linear and the equation system 

(3) is also linear. In this paper, we will carry out the general development for the dif- 
fusion operator corresponding to the expanding sphere electrode model since, from 
the solutions obtained for that, we can deduce those corresponding to the operators 
given by eqs. (5), (6) and (8) as particular cases. In the case of tubular electrodes, 
(eq. (7)), the procedure followed is similar. For dynamic electrodes, the first current 
step I1 must be used after a blank period tbp. This blank period does not exist in the 
case of electrodes of constant area [7]. 

The boundary value problem corresponding to the first step current is given by 

(a) Reaction product soluble in the electrolytic solution: 

t l=O;r>~ro, } C1A(r,t)=C~, (9) 

t, > 0; r --~ oo, Cl(r, t) = C* s . 

(b) Reaction product soluble in the electrode (amalgam formation): 

t l=O;r~>ro,  t C ~ ( r , t ) = C ] ,  
(10) 

tl > 0;r ~ oo, ~ Cl(r, t)  = O, 

t l = 0 ; r < r 0 ,  / C~(r , t )=O,  
(11) 

tl > 0;r ~ -oo  , f cls(r, t) = C~ , 

tl > O; r = ro 

a \ Or ),=,o 
( OCls - (12) I1 

Or ]r=ro nFA(ts) 

with 

A(ts)  = Aoq/3 (13 )  

and ts is given in Notations and definitions. 

Throughout this paper the upper sign in any equation refers to a reaction product 
which is soluble in the electrolytic solution whilst the lower sign corresponds to a 
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product which is soluble in the electrode (amalgam formation). Furthermore, the 
superscript which appears in the concentrations of species A and B will refer to the 
number of the current step being considered. 

The solutions for the concentration profiles of species A and B, C~ (r, t) and 
C1B(r, t), when the first step current, I1, is applied, have been obtained previously [7] 
and their values for the electrode surface, C~(ro, t) and C~(ro, t), are given in 
Appendix (eqs. (A. 1) and (A.2)). 

At t = ~q, the current is reversed to an anodic value -I2 during the interval 
0 ~< t2 < r2 (t --- "q + t2), with the reoxidation of species B being produced. 

The study of the application of the two successive, alternating sign current steps 
constitutes an electrochemical technique of great interest: "current reversal chron- 
opotentiometry". This technique was introduced in 1953 by Delahay [8], who 
obtained the solutions corresponding to a plane electrode when both species are 
soluble in the electrolytic solution. 

The solutions corresponding to the second step current for any of the operators 
given by eqs. (4)-(8), C2(r, t) and C2(r, t), can be expressed, due to the linearity of 
the equation system (3), in the following manner: 

C (r,t) = C (r,t) + I 

C~(r,t) = C1B(r,t) + C2(r,t),  ~ (14) 

where C 1 (r, t) and C1B(r, t) are the solutions found in ref. [7] for the first step current 
and ~,2 (r, t) and C2(r, t) are the new unknown quantities to be determined. 

For this second current step, the boundary value problem, taking into account 
eqs. (9)-(12), can be expressed only in terms of the new unknown quantities ~,2 (r, t) 
and C2(r, t), and is given by 

tz = O; r ~ r° } 
< ' C2(r , t )=C2B(r , t )=O,  (15) 

t2 > 0; r --* +oo, 

t2 > 0 ; r = r 0 ,  

a \ Or =T-b--\--~-~r , (16) 
r~---r 0 r~---r 0 

DA ( 0 C ]  "~ _ -(I1 + I2) (17) 
a k. Or J r=r0 nFA(ts) 

The solutions for this second step current, C](r,t) and C2(r,t), have been 
obtained in a previous paper [7] and their expression for the electrode surface, 
C ] (r0, t) and C2(ro, t), are given in Appendix (eqs. (a.5) and (A.6)). 

For thejth step current ( -  1 ~+/],  we can express the solution in the form 
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j-1 
,j-1 C~(r,t) = cJ - l ( r , t )  + ~?~(r,t), where C i (r,t) = C:(r , t )  + Z @ ( r , t ) .  

m = 2  

(18) 

And from eqs. (15)-(17) and (18) it is easy to demonstrate through induction 
that the boundary value problem for any step current ( - l ~ + l / j  with j > 1 is 
given by 

t /=0;r~> } 
~ < r o ,  ~ j ( r , t ) = ~ j ( r , t ) = O ,  (19) 

tj > O; r ---+ q-cx3 , 

tj > O; r = ro , 

\ or / =T-h- 
a r=r0  \ \ J r = r 0  

(20) 

a Or Jr=,0 ,,FA(t,) (21) 

Since the boundary value problem can be expressed in a general form for any cur- 
rent step (-1)/+1/: withj  > 1, the surface concentrations of species A and B for any 
step can be expressed as a sum o f j  terms. In these conditions, the superposition 
principle is fulfilled and the following is obtained: 

C~(ro, t) = C* A 1 - Nsa )-~.(-1) n+l (tnj)l/:HA,n(1 + Qn) , (22) 
ts n = l  * 

with 

J 
, , 1 V - : _ 1 2 + 1  :. CJ(r0, t) = C* B + C)4bTA,BN, ,2/3 L , ,  - ,  ~ (t"J)I/2HB,"(1 + Qn) 

tS n= l  

(23) 

In-I  
Q n =  In ' if n >  1 ,~  (24) 
Q1 = 0. ) 

tnj is given by eq. (A.11) and HA,, and HB,n are given by eq. (A.8) of Appendix. 
When species B is amalgamated into the electrode we must change (~B,n) to (-~B,.) 
in the HB,, series in eq. (23) (see Appendix). Ns and "YA,B are given by eqs. (A.3) and 
(A.4), respectively. 

To obtain the transition time corresponding to the j th  current step, ( -1  ~+I/j, 
we must impose that the concentration of the species that is oxidized or reduced be 
zero in the surface of the electrode. 
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If j is odd, a reduction process will take place. By imposing that CJ(r0, rl 
+ . . .  + 7).) = 0 in (22), we obtain the transition time for the reduction of species A, 

(tbp q- Tlj) 2/3 J 
aNs _ Z ( _ l ) n + l  In n=I ~ (~-"J)U2HA'n(1 + Qn). (25) 

If j is even, an oxidation process will be produced. By imposing C~(ro, rx 
+ . . .  + "rj) = 0 in (23), we obtain, analogously to the previous case, the transition 
time corresponding to the oxidation of species B, 

( tbp -k- Zlj) 2/3 C~4 j 1)n+l In 
= ~ Z ( -  ~I ('rnj)U2HB,,(1 + Qn) (26) 

byA,BNs n=l 

In these equations, "rnj is given by 

J 

T.j = Z rm. (27) 
m~n 

Eqs. (25) and (26) for the particular case of a stationary plane electrode 
(r0 ooandtbp >> t) 2/3 . • ---, of area A = Aotbe coincide with those obtained by Herman 
and Bard (eqs. (8) and (9), respectively, m ref. [1]). 

From eqs. (22) and (23) for the surface concentrations obtained for an expanding 
spherical electrode model, it is possible to obtain solutions corresponding to the 
expanding plane electrode model (eq. (5)) by making r0 ---, ~ in the series Hi,, of 
eqs. (22), (23) and (25),(26). If in the previous equations we make tbp >> t, the 

2/3 expanding spherical electrode behaves like an electrode of constant area A = Aotbp 
(see Notations and definitions), making the series Hi,n of eqs. (22), (23) and (25), 
(26) take the form given by eq. (A. 14). 

In Figs. 1 and 2 we have represented the potential time curves deduced 
(supposing that process (I) is reversible), by substituting eqs. (22) and (23) in 
Nernst's equation, obtaining 

RT [CJ(ro, t)] a (28) 
E(t) = E ° + ~-ff In [-~B (r0---- ~ t)lb. 

We have used this equation to deduce the potential time response corresponding 
to the application of five current steps to a stationary spherical electrode. 

Fig. 1 shows how the influence of the amalgam formation, which does not affect 
the first transition time ~-1, makes the even transition times increase in relation to 
those obtained when B is soluble in the solution, the more so as the number of the 
current steps applied is increased. In the transition times corresponding to the 
reduction ofA for j  = 3, 5, . . .  this effect is also obtained, but its origin is different. 
This behaviour can be used in the laboratory to characterize the amalgamation in a 
more conclusive manner than the proposal in reversal current chronopotentiome- 
try, in which only two current step are applied. Fig. 2 shows the influence of the elec- 
trode sphericity in the response obtained when both species are soluble in the 
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Fig. 1. Influence of the amalgam formation on the potential time curves in cyclic chronopotentiome- 
try for the process (I) for a reversible charge transfer reaction (eq. (28)). Ns = 3.0s -1/2, 
DA = D B = I 0  -5cm 2s -1 (TA,B=l.0),r0=0.015 cm, Q3=Q5=2, Q2=Q4=l /2 ,  a = b = l .  In 
curve A, the reaction product is soluble in the solution and, in curve B the reaction product is soluble 

in the electrode. 

electrolytic solution. In this figure, curve A corresponds to a plane electrode whose 
operator  is given by eq. (8) and the solution corresponding to that  is obtained by 
simultaneously making r0 ~ 0o and tbp >> t in eqs. (22), (23) and (25), (26). In the 
last case, the results obtained in this paper coincide with those published by 
Herman  and Bard [1]. 

Finally, the solution corresponding to tubular electrodes is obtained by substi- 
tuting series Hi,, in (22),(23) by series Hir~ given by eq. (A. 16). To deduce the cyclic 
chronopotent iometr ic  response in tubular electrodes (see eq. (7)), we have taken 
into account  the solution found by Aoki et al. for the application of  a single current  
step [9] since we have shown that  the superposition principle is fulfilled. 

3. N o t a t i o n s  a n d  def in i t ions  

C~ (r, t) 

a,b 

concentrat ion profiles of  the i species (with i = A or B) for the j th  step 
current,  
cathodic and anodic reaction orders, respectively, which are coinci- 
dent  with the stoichiometric coefficients, 
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Fig, 2. Influence of the electrode sphericity on the potential time curves in cyclic chronopotentiometry 
for the process (I) for a reversible charge transfer reaction (eq. (28)). The values of  r0 in cm are: 

(A) r0 --* to (planar electrode), (B) 0.03 and (C) 0.01. Other conditions as Fig. 1. 

kf and kb 

ij 
Di 
F 

ro 

tbp 
t 

tj 

ts 

m~ig and d 
A(ts) 
At 

rate constants of forward (reduction) and backward (oxidation) pro- 
cesses, 
absolute value of thej th current step applied, 
diffusion coefficient of species i, 
distance from the center of the spherical electrode, 

electrode radius at time ts (= (t~/3) for a DME, 
constant electrode radius for a SMDE, 

blank period used only for a DME, 
time elapsed between application of the first and the j th  current step 
( =  r~ + . . . + 5._~ + t:) ,  

time during which a j  step current is applied (0 ~< t: < "rj), 
time in which the change in sign of the current is produced, as well as 
the absolute value, 
total time (= tbp + t), 
electrode radius at ts = 1 s for a DME (= (3mHg/47rd)1/3), 
rate of flow and density of mercury, 
time dependent electrode area ofa  DME (= Aot~/3), 
= (470 /3 (3mHg/d)2/3 in cm 2 s -2/3, 
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A 

")'A,B 
DME 

SMDE 

EPE 
SPE 
TE 
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2/3 electrode area (= Aotbp ) when tbp >> t (static spherical or planar elec- 
trodes), 
= JbS-/z B, 
dropping mercury electrode for which the expanding sphere electrode 
model (eq. (4)) and the expanding plane electrode model (eq. (5)) are 
used, 
stationary spherical electrode model or static mercury dropping elec- 
trode (eq. (6)), 
expanding plane electrode model (for the DME) 
stationary plane electrode (eq. (8)), 
tubular or cylindrical electrode (eq. (7)). 

Other definitions are conventional. 
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Appendix 

A. 1. FIRST STEP CURRENT 

By using the dimensionless parameters method, we obtained [7] the following 
expressions for the surface concentrations of the A and B species for the first step, 
corresponding to the expanding sphere electrode model (eq. (4)): 

tl/2 
CIA(ro, t) = C* A - aC~Ns-2~/3 HA,1 , (A.1) 

Is 

tl/2 
C l  (ro, t) = C* B -t- bC*A"/A,BNs-~ HB, I . (A.2) 

ts 

Moreover, 

Ns nFx/-D-AA AoC]  (A.3) 

= . ( A . 4 )  
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A.2. SECOND STEP CURRENT 

For the second step current (0 ~< t2 ~< ~-2) we deduced the following expressions 
for the surface concentrations of the A and B species [7]: 

,2 } C~(ro, t) = C] - aC]Us (~-1 + t2)I/2HA3 - (1 + Q2)~11 (t2)V2HA,2 , 
ts k 

(A.5) 

with 

Q(ro ,  t) = Q + bC*~Ns~A,B-~ (~'1 + t2)l/2HB,1 - (1 + Q2) (t2)l/2He,2 
ts 

(A.6) 

11 
Q 2 = ~ .  (A.7) 

The Hi,n series has a general expression which does not depend on the step current 
considered, 

2 Hi,n = V(13,) q: ~i,nFl(fl,) + (~i,n) F2( /3 . ) ,  (A.8) 

where 

1 3 n ( t n J )  1/3 = , (A.9) 
tbp + tlj 

2 ~  (A.10) 
~i,n- ~t]/3 , 

j-1 } 
= Z ~m + tj, tnj (A.11) 

m = t l  

tsj t j ,  

1 ( 1 3 7 6 4  1 1 1 2 )  
F(/3.)=-i7~/2 a+~/JI+2-N92+ ~.9+5-~9. +.. .  , 

1( 1 3 1 6  ) Fl(3,)=~ 1+~3~+N32+.. .  , 

( 23 ) 1 1 +  + 
F2(t3n) -- 67rl/2 ~/3~ . . . .  

(A.12) 
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Throughout  this appendix, when two signs appear, the upper sign in an equation 
refers to a reaction product  which is soluble in the electrolytic solution whilst the 
lower sign corresponds to a product  which is amalgamated in the electrode (this is 
equivalent to changing (~i,n) to (--~i,n)). 

A.3. PARTICULAR CASES OF THE H-SERIES 

(a) If  r0 ~ cxD (~i,n = 0) the above expressions are simplified notably and become 
those corresponding to an expanding plane electrode (EPE). So, eq. (A.8) is simpli- 
f iedto  

H/EriE = F(/3.). (A.13) 

(b) By making tbp >> t in eqs. (A.1) and (A.2), we obtain the expressions corre- 
sponding to a stationary sphere electrode model (SMDE) of area A A .2/3 = ~OLbp . In th is  
situation, eq. (A. 8) becomes 

i,n ~i,--~ 1 - exp 1 q: erf . (A.14) 

(c) If  r0 ~ c~ and tbp >> t, we deduce the equations corresponding to a stationary 
A ,2/3 plane electrode (SPE) of area A = -'~O'bp and eq. (A. 8) is t ransformed to 

Hi SffE = 1 (A.15) 
7rl/2 • 

(d) For  a tubular electrode (TE), the mathematical  t reatment for the first current  
step is given in ref. [9] and for any current s tepj  > 1 we deduce, taking into account  
that  the superposition principle is fulfilled, that the series Hi,n in eqs. (22) and (23) is 
g ivenby 

/ / T E  _ 1 1 1 2 3 21 
i,. v7 ~ ~ i , .  + l - ~ i , .  2~6~i3,. + 25~-6v,~/,. 

9 633 ~ (A.16) 
4096~i5. -~ 286720x/-~..,,. . . . .  . 
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